MJ-1266

B.Sc. (Part - I)

Term End Examination, March-April, 2022

MATHEMATICS

Paper - I

Algebra and Trigonometry

[Maximum Marks : 50
[Minimum Marks : 17
Time : Three Hours]

नोट : प्रत्येक प्रश्न से किन्हीं दो भागों को हल कीजिए। सभी प्रश्नों के अंक समान हैं।
Note : Answer any two parts from each question. All questions carry equal marks.

इकाई / Unit-I

1. (a) प्रारंभिक रूपान्तरणों की सहायता से और $A=I A$ से A^{-1} का मान ज्ञात कीजिए, जहाँ :

$$
A=\left[\begin{array}{rrr}
1 & -3 & 2 \\
2 & 0 & 0 \\
1 & 4 & 1
\end{array}\right]
$$

$$
A=\left[\begin{array}{rrr}
1 & -3 & 2 \\
2 & 0 & 0 \\
1 & 4 & 1
\end{array}\right]
$$

(b)
(b) निम्मालिखित आव्यूह को प्रसामान्य रूप में बद्वलए और इसकी जाति ज्ञात कीजिए:

$$
\left[\begin{array}{rrrr}
1 & 2 & 0 & -1 \\
3 & 4 & 1 & 2 \\
-2 & 3 & 2 & 5
\end{array}\right]
$$

Reduce the following matrix in the nomal form and find its rank :

$$
\left[\begin{array}{rrrr}
1 & 2 & 0 & -1 \\
3 & 4 & 1 & 2 \\
-2 & 3 & 2 & 5
\end{array}\right] .
$$

(c) कैले-होमिल्टन प्रमेय का कथन लिखकर, सिद्ध कीजिए।

इकाई/Unit-II

2. (a) निम्नलिखित समीकरणों को आव्यूह विधि की प्रारंभिक संक्रियाओं द्वारा हल कीजिए:

$$
\begin{aligned}
& x+y+z=6 \\
& x-y+z=2 \\
& 2 x+y-z=1
\end{aligned}
$$

Solve the following equations with the help of elementary operations of matrix method:

$$
\begin{aligned}
& x+y+z=6 \\
& x-y+z=2 \\
& 2 x+y-z=1
\end{aligned}
$$

(b) यदि समीकरण $x^{3}+3 p x^{2}+3 q x+r=0$ के मूल गुणोत्तर श्रेणी में हों, तो सिद्ध कीजिए कि $p^{3} r=q^{3}$
If the roots of the equation $x^{3}+3 p x^{2}+3 q x+r=0$ are in G.P, then prove that $p^{3} r=q^{3}$.
(c) कार्डन विधि से त्रिघात को हल कीजिए :

$$
x^{3}-18 x-35=0
$$

Solve the cubic by Cardon's method:
$x^{3}-18 x-35=0$

57 JDB * (7)

इकाई / Unit-III

3. (a) तुल्यता संबंध की परिभाषा दीजिए तथा सिद्ध कीजिए कि संबंध $a \equiv b(\bmod m)$, समस्त पूर्णांकों के समुच्चय I में एक तुल्यता संबंध है।

Define equivalance relation and prove that the relation $a \equiv b(\bmod m)$, in the set of all integers I is an equivalence
(b) एक समूह G के एक अरिक्त उपसमुच्चय H के एक उपसमूह होने के लिए आवश्यक एवं पर्याप्त प्रतिबन्ध यह है कि $a \in H, b \in H \Rightarrow a \circ b^{-1} \in H$ जहाँ b^{-}, b का प्रतिलोम है G में।

A necessary and sufficient condition for a non-empty subset H of a group G to be a subgroup is that $a \in H, b \in H$ $\Rightarrow a \circ b^{-1} \in H$ where b^{-}is the inverse
of b in G.
(c) सिद्ध कीजिए कि किसी समूह के दो प्रसामान्य उपसमूहों का सर्वनिष्ठ एक प्रसामान्य उपसमूह होता है।
57_JDB_*_(7)

(5)

Prove that the intersection of any two normal subgroup of a group is a normal subgroup.

इकाई / Unit-IV

4. (a) सिद्ध कीजिए कि इकाई के n, n वें मूलों का गुणात्मक समूह अवशेष कक्षाओं के माड्यूलों n के योगात्मक समूह के तुल्याकारी होता है।
Prove that the multiplicative group of n, nth root of unity is isomorphic to the additive group of residue classes modulo n.
(b) शून्य भाजक एवं शून्य भाजक रहित वलय को परिभाषित कीजिए एवं सिद्ध कीजिए कि M सभी 2×2 आव्यूहों, जिनके अवयव पूर्णांक हैं, का समुच्चय है, आव्यूहों का योग और गुणन दो वलय संयोजन है। तब M शून्य भाजक सहित एक वलय है।
Define zero divisors and rings without zero divisors and prove that M is a ring of all 2×2 matrices. whose

$$
57_{-} \mathrm{JDB}_{-} \times(7)
$$

elements are integers, the multiplication of matrices being adition ring compositions. Then M ing the twd
with zero divisiors.
(c) सिद्ध कीजिए कि प्रत्येक परिमित

प्रांत एक क्षेत्र होता है।
Prove that every finite integral domain
is a field.

इकाई/Unit-V

5. (a) यदि $x_{r}=\cos \frac{\pi}{2^{r}}+i \sin \frac{\pi}{2^{r}}, \quad i=1,2,3 \ldots \ldots$, तो सिद्ध कीजिए कि $x_{1} \cdot x_{2} \cdot x_{3} \ldots \ldots$ अनन्त
तक $=-1$

If $x_{r}=\cos \frac{\pi}{2^{r}}+i \sin \frac{\pi}{2^{r}}, \quad i=1,2,3 \ldots \ldots$, then prove that
(b) हल कीजिए $x_{1} \cdot x_{2} \cdot x_{3} \ldots \ldots$ ad. inf. $=-1$ $x^{7}+1=0$

MJ-1267

B.Sc. (Part-I)

Term End Examination, March-April, 2022

MATHEMATICS

Paper - II

Calculus

Time : Three Hours] | [Maximum Marks : 50 |
| ---: |
| $[$ Minimum Pass Marks $: 17$ |

नोट : प्रत्येक प्रश्न से किन्हीं दो भागों के उत्तर दीजिए। सभी प्रश्नों के अंक समान हैं।
Note : Answer any two parts from each question. All questions carry equal marks.

इकाई / Unit-I

1. (a) $\varepsilon-\delta$ विधि से दर्शाइए कि

$$
\lim _{x \rightarrow 0} x \sin \frac{1}{x}=0
$$

(2)

Using $\varepsilon-\delta$ technique, show that

$$
\lim _{x \rightarrow 0} x \sin \frac{1}{x}=0
$$

(b) यदि $y=\left(x^{2}-1\right)^{n}$, तो सिद्ध कीजिए कि

$$
\left(x^{2}-1\right) y_{n+2}+2 x y_{n+1}-n(n+1) y_{n}=0
$$

If $y=\left(x^{2}-1\right)^{n}$, then prove that

$$
\left(x^{2}-1\right) y_{n+2}+2 x y_{n+1}-n(n+1) y_{n}=0
$$

(c) सिद्ध कीजिए :

$$
\log (1+\sin x)=x-\frac{x^{2}}{2}+\frac{x^{3}}{6}-\frac{x^{4}}{12}+\frac{x^{5}}{24}+\cdots \cdots
$$

Prove that:

$$
\log (1+\sin x)=x-\frac{x^{2}}{2}+\frac{x^{3}}{6}-\frac{x^{4}}{12}+\frac{x^{5}}{24}+\cdots \cdots
$$

(3)

इकाई / Unit-II

2. (a) निम्न वक्र का अनंतस्पर्शीयाँ ज्ञात कीजिए:

$$
x^{3}+y^{3}=3 a x y
$$

Find the asymptotes of the following curve :

$$
x^{3}+y^{3}=3 a x y
$$

(b) वक्र $y=\frac{a}{2}\left(e^{x / a}+e^{-x / a}\right)$ के लिए सिद्ध कीजिए कि

$$
\rho=\frac{y^{2}}{a}
$$

For the curve $y=\frac{a}{2}\left(e^{x / a}+e^{-x / a}\right)$ prove
that

$$
\rho=\frac{y^{2}}{a}
$$

(c) वक्र $a^{2} y^{2}=x^{2}\left(a^{2}-x^{2}\right)$ का अनुरेखण
कीजिए।

Trace the curve $a^{2} y^{2}=x^{2}\left(a^{2}-x^{2}\right)$.

इकाई / Unit-III

3. (a) सिद्ध कीजिए :

$$
\int_{0}^{1 \log (1-x)} \frac{\pi^{2}}{x} d x=-\frac{\pi^{2}}{6}
$$

Prove that:

$$
\int_{0}^{1 \log (1-x)} \frac{\pi^{2}}{x} d x=-\frac{\pi^{2}}{6}
$$

(b) यदि $I_{n}=\int_{0}^{a}\left(a^{2}-x^{2}\right)^{n} d x ; n>0$, तो सिद्ध कीजिए कि

$$
I_{n}=\frac{2 n a^{2}}{2 n+1} I_{n-1}
$$

If $I_{n}=\int_{0}^{a}\left(a^{2}-x^{2}\right)^{n} d x ; n>0$, then prove that

$$
I_{n}=\frac{2 n a^{2}}{2 n+1} I_{n-1}
$$

(c) परवलयों $y^{2}=4 a x$ और $x^{2}=4 a y$ के बीच घिरे क्षेत्र का क्षेत्रफल ज्ञात कीजिए।
Find the area enclosed by the parabolas $y^{2}=4 a x$ and $x^{2}=4 a y$.

इकाई / Unit-IV
4. (a) हल कीजिए :
$y \sin 2 x d x-\left(1+y^{2}+\cos ^{2} x\right) d y=0$
Solve that:
$y \sin 2 x d x-\left(1+y^{2}+\cos ^{2} x\right) d y=0$
(b) हल कीजिए :

$$
p^{2}-2 p \cosh x+1=0
$$

Solve that :

$$
p^{2}-2 p \cosh x+1=0
$$

75_JDB_夫_(7)
(6)
(c) हल कीजिए :

$$
\frac{d x}{1+y}=\frac{d y}{1+x}=\frac{d z}{z}
$$

Solve that:

$$
\frac{d x}{1+y}=\frac{d y}{1+x}=\frac{d z}{z}
$$

इकाई / Unit-V

5. (a) हल कीजिए :

$$
x \frac{d^{2} y}{d x^{2}}(2 x-1) \frac{d y}{d x}+(x-1) y=0
$$

Solve that:
$x \frac{d^{2} y}{d x^{2}}-(2 x-1) \frac{d y}{d x}+(x-1) y=0$
(b) प्रावल विचरण विधि से समीकरण $\left(D^{2}+a^{2}\right) y=\sec a x$ का हल ज्ञात कीजिए। Apply the method of variation of parameters to solve $\left(D^{2}+a^{2}\right) y=\sec a x$. 75_JDB_*_(7) $_{\text {(Continued) }}$

MJ-1268

B.Sc. (Part - I)

Term End Examination, March-April, 2022

MATHEMATICS

Paper - III

Vector Analysis and Geometry

नोट : प्रत्येक प्रश्न से किन्हीं दो भागों के उत्तर दीजिए। सभी प्रश्नों के अंक समान हैं।
Note : Answer any two parts from each question. All questions carry equal marks.

इकाई / Unit-I

1. (a) मान ज्ञात कीजिए

$$
\frac{d^{2}}{d t^{2}}\left[\vec{r} \frac{d \vec{r}}{d t} \frac{d^{2} \dot{r}}{d t^{2}}\right]
$$

Find the value of

$$
\frac{d^{2}}{d t^{2}}\left[\vec{r} \frac{d \vec{r}}{d t} \frac{d^{2} \vec{r}}{d t^{2}}\right]
$$

(b) $\phi=x^{2}-2 y^{2}+4 z^{2}$ का दिक्-अवकलज बिन्दु $P(1,1,-1)$ पर $2 i+j-k$ की दिशा में ज्ञात कीजिए।

Find the directional derivative of $\phi=x^{2}$ $-2 y^{2}+4 z^{2}$ at the point $P(1,1,-1)$ in the direction $2 i+j-k$.
(c) यदि $\vec{r}=x i+y j+z k$, तो दिखाइए कि $\nabla \cdot\left[\frac{f(r) \bar{r}}{r}\right]=\frac{1}{r^{2}} \frac{d}{d r}\left(r^{2} f\right)$ If $\bar{r}=x i+y j+z k$, then show that $\nabla \cdot\left[\frac{f(r) \bar{r}}{r}\right]=\frac{1}{r^{2}} \frac{d}{d r}\left(r^{2} f\right)$.

इकाई/Unit-II

2. (a) $\int_{C}[y z d x+(z x+1) d y+x y d z]$ का मान ज्ञात कीजिए, जहाँ $C,(1,0,0)$ से $(2,1,4)$ तक
कोई पथ है।

Evaluate $\quad \int_{C}[y z d x+(z x+1) d y+x y d z]$ where C is any path passing from $(1,0,0)$ to $(2,1,4)$
(b) समतल में ग्रीन के प्रमेय द्वारा मूल्यांकन कीजिए $\oint_{C}\left[e^{x}(x+\sin y) d x+e^{x}(x+\cos y) d y\right]$

उस वर्ग पर जिसके शीर्ष $(\pm 1, \pm 1)$ है।

Use Green's theorem in plane to evaluate $\oint_{C}\left[e^{x}(x+\sin y) d x+e^{x}(x+\cos y) d y\right]$ over the square with vertices $(\pm 1, \pm 1)$.
(c) $\iint_{S} \operatorname{curl} F . n d s$ का मान ज्ञात कीजिए जहाँ S पृष्ठ $x^{2}+y^{2}-2 a x+a z=0$ का वह भाग है जो समतल $z=0$ के ऊपर है तथा $F=\left(y^{2}+z^{2}-x^{2}\right) i+\left(z^{2}+x^{2}-y^{2}\right) j$ $+\left(x^{2}+y^{2}-z^{2}\right) k$ स्टोक्स के प्रमेय का सत्यापन भी कीजिए।
Evaluate $\quad \iint_{S} \operatorname{curl} F . n d s$ where $F=\left(y^{2}+z^{2}-x^{2}\right) i+\left(z^{2}+x^{2}-y^{2}\right) j$ $+\left(x^{2}+y^{2}-z^{2}\right) k$ and S is the portion of the surface $x^{2}+y^{2}-2 a x+a z=0$ above the plane $z=0$ and also verify Stoke's theorem.

99_JDB_* (7)
(Turn Over)

इकाई / Unit-III

3. (a) निम्न शांकव का अनुरेखण कीजिए

$$
x^{2}-4 x y-2 y^{2}+10 x+4 y=0
$$

Trace the following conic

$$
x^{2}-4 x y-2 y^{2}+10 x+4 y=0
$$

(b) प्रतिबन्ध ज्ञात कीजिए $\frac{l}{r}=A \cos \theta+B \sin \theta$ शांकव $\frac{l}{r}=1+e \cos \theta$ को स्पर्श करती है।

Find the condition that the line $\frac{l}{r}=A \cos \theta+B \sin \theta$ may be a tarigent to the conic $\frac{l}{r}=1+e \cos \theta$.
(c) शांकव $\frac{l}{r}=1+e \cos \theta$ के बिन्दु ' α ' पर अभिलंब का समीकरण ज्ञात कीजिए। Find the equation of the normal at a point ' α ' on the conic $\frac{l}{r}=1+e \cos \theta$.

इकाई / Unit-IV

4. (a) वृत्त $x^{2}+y^{2}+z^{2}+12 x-12 y-16 z+111=0$, $2 x+2 y+2 z=17$ का केन्द्र और त्रिज्या ज्ञात कीजिए।
Find the centre and radius of the circle $x^{2}+y^{2}+z^{2}+12 x-12 y-16 z+111=0$, $2 x+2 y+2 z=17$.
(b) उस शंकु का समीकरण ज्ञात कीजिए जिसका शीर्ष $(1,2,3)$ और आधार वक्र, वृत्त $x^{2}+y^{2}+z^{2}=4, x+y+z=1$ है।
Find the equation of the cone whose vertex is $(1,2,3)$ and base curve is the circle $x^{2}+y^{2}+z^{2}=4, x+y+z=1$.
(c) उस लंबवृत्तीय बेलन का समीकरण ज्ञात कीजिए जिसकी त्रिज्या 2 तथा अक्ष रेखा $\frac{x-1}{2}=\frac{y}{3}=\frac{z-3}{1}$,
Find the equation of the right circular cylinder whose radius is 2 and axis is the line $\frac{x-1}{2}=\frac{y}{3}=\frac{z-3}{1}$.

इकाई / Unit-V

5. (a) दीर्घवृतज $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1$ के उस प्रतिच्छेद वक्र के केन्द्र का बिन्दु पथ ज्ञात कीजिए जिसके तल दोर्घवृत्तज केन्द्र से p दूरी पर स्थित है।

Find the locus of centres of sections of the ellipsoid $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1$ by planes which are at a constant distance p from the centre of the ellipsoid.
(b) सिद्ध कीजिए कि शांकवज $a x^{2}+b y^{2}+c z^{2}=1$

का शंकु $\frac{x^{2}}{b+c}+\frac{y^{2}}{c+a}+\frac{z^{2}}{a+b}=0$ ।
Prove that the section of the conicoid
$a x^{2}+b y^{2}+c z^{2}=1$ by a tangent plane to
the cone $\frac{x^{2}}{b+c}+\frac{y^{2}}{c+a}+\frac{z^{2}}{a+b}=0$ is a
rectangular hyperbola.
(c) समीकरण
$3 x^{2}+7 y^{2}+3 z^{2}+10 y z-2 z x+10 x y+4 x$
का समानयन प्रामाणिक रूप में कीजिए तथा
शांकवज की प्रकृति बताइए।
Reduce the equation
$\begin{aligned} 3 x^{2}+7 y^{2}+3 z^{2}+10 y z- & 2 z x+10 x y+4 x \\ - & 12 y-4 z+1=0\end{aligned}$
to the standard form and state the nature of the conicoid.

