IJ-1266

B.Sc. (Part - I)

Term End Examination, 2018

MATHEMATICS

Paper - I

Algebra and Trigonometry

Time : Three Hours] [Maximum Marks : 50

नोट : प्रत्येक प्रश्न से किन्हीं दो भागों को हल कीजिए। सभी प्रश्नों के अंक समान हैं।
Note : Answer any two parts from each question. All questions carry equal marks.

इकाई / Unit-I

1. (a) प्रारंभिक रूपांतरण से निम्न आव्यूह

$$
\left[\begin{array}{rrr}
1 & 0 & -1 \\
3 & 4 & 5 \\
4 & -6 & -7
\end{array}\right]
$$

का व्युत्क्रम ज्ञात कीजिए।

(2)

Find inverse of the following matrix

$$
\left[\begin{array}{rrr}
1 & 0 & -1 \\
3 & 4 & 5 \\
4 & -6 & -7
\end{array}\right]
$$

by elementary transformation.
(b) आब्यूह

$$
A=\left[\begin{array}{rr}
\cos \theta & \sin \theta \\
\sin \theta & -\cos \theta
\end{array}\right]
$$ अभिलक्षणिक मान व संगत अभिलक्षणिक सदिश ज्ञात कीजिए।

Find eigenvalue and corresponding eigen vector of the matrix

$$
A=\left[\begin{array}{rr}
\cos \theta & \sin \theta \\
\sin \theta & -\cos \theta
\end{array}\right]
$$

(c) सिद्ध कीजिए कि एकिक आब्यूह के अभिलक्षणिक मूलों का मापांक 1 होता है।

Prove that modulus of eigenvalues of unitary matrix is 1 .
(3)

इकाई / Unit-II

2. (a) λ के किन मानों के लिए समीकरणों का हल होगा

$$
\begin{gathered}
x+y+z=1 \\
x+2 y+4 z=\lambda \\
x+4 y+10 z=\lambda^{2}
\end{gathered}
$$

प्रत्येक स्थिति में इनके हल ज्ञात कीजिए।

For what values of λ following equations will have solution

$$
\begin{gathered}
x+y+z=1 \\
x+2 y+4 z=\lambda \\
x+4 y+10 z=\lambda^{2}
\end{gathered}
$$

Find solutions in all cases.
(b) समीकरण $9 x^{3}-6 x^{2}+1=0$ को कार्डन विधि से हल कीजिए।

Solve the equation $9 x^{3}-6 x^{2}+1=0$ by Cardon's method.
(c) समीकरण $x^{4}+2 x^{3}-21 x^{2}-22 x+40=0$ को हल कीजिए, जबकि मूल समांतर श्रेढी में है।

Solve the equation $x^{4}+2 x^{3}-21 x^{2}-22 x$ $+40=0$ whenever roots are in Arithmetic progression.

इकाई / Unit-III

3. (a) यदि I पूर्णांकों का समूच्वय है तथा संबंध R, I पर $x R y \Leftrightarrow x-y$ एक सम पूर्णांक से परिभाषित है, तो दिखाइए कि R एक तुल्यता संबंध होगा।

If I is the set of integers and relation R defined on I by $x R y \Leftrightarrow x-y$ is an even integer, than show that R is an equivalance relation.
(b) माना H, G का अरिक्त उपसमूच्चय है। तो सिद्ध कीजिए कि H, G का उपसमूह होगा। यदि और केवल यदि $a_{1} b \in G \Rightarrow a b^{-1} \in G$, जहाँ b^{-1}, G में b का विलोम है।

(5)

Let H be a non empty subset of group G. Then show that H is subgroup of G if and only if $a_{1} b \in G \Rightarrow a b^{-1} \in G$, where b^{-1} is inverse of b in G.
(c) सिद्ध कीजिए कि अभाज्य कोटि का प्रत्येक समूह चक्रीय होता है।
Prove that every group of prime order is cyclic.

इकाई / Unit-IV

4. (a) दिखाइए कि आबेली समूह का समाकारी प्रतिबिम्व आबेली होता है, परन्तु विलोम सत्य नहीं होता।

Prove that homomorphic image of abelian group is abelian, but converse not true.
(b) वलय का परिभाषा लिखकर एक उदाहरण दीजिए।

Define ring and give an example of ring.

(6)

(c) सिद्ध कीजिए कि प्रत्येक परिमित पूर्णांकीय प्रांत एक क्षेत्र होता है।

Prove that every finite integral domain is a field.

इकाई / Unit-V

5. (a) यदि $x_{r}=\cos \left(\pi / 2^{r}\right)+i \sin \left(\pi / 2^{r}\right)$, सिद्ध कीजिए

$$
x_{1} \cdot x_{2} \cdot x_{3} \ldots . .=-1
$$

If $\quad x_{r}=\cos \left(\pi / 2^{r}\right)+i \sin \left(\pi / 2^{r}\right), \quad$ them prove that

$$
x_{1} \cdot x_{2} \cdot x_{3} \ldots . .=-1
$$

(b) यदि $\sin (\theta+i \phi)=\tan \alpha+i \sec \alpha$, तब सिद्ध कीजिए कि

$$
\cos 2 \theta \cdot \cos h 2 \phi=3
$$

If $\sin (\theta+i \phi)=\tan \alpha+i \sec \alpha$, then prove
that

$$
\cos 2 \theta \cdot \cos h 2 \phi=3
$$

(c) निम्न श्रेणी का योगफल ज्ञात कीजिए:

$$
\sin \alpha+c \sin (\alpha+\beta)+c^{2} / L^{2} \sin (\alpha+2 \beta)+\cdots \cdot
$$

Find sum of the following series:

$$
\sin \alpha+c \sin (\alpha+\beta)+c^{2} / L^{2} \sin (\alpha+2 \beta)+\cdots .
$$

IJ-1267

B.Sc. (Part - I)
 Term End Examination, 2018

MATHEMATICS

Paper - II

Calculus
Time : Three Hours] [Maximum Marks : 50
नोट : प्रत्येक प्रश्न से किन्हीं दो भागों को हल कीजिए। सभी प्रश्नों के अंक समान हैं।
Note : Answer any two parts from each question. All questions carry equal marks.

इकाई / Unit-I

1. (a) निम्नलिखित फलन का $x=0$ पर सान्तत्यता का परीक्षण कीजिए :

$$
f(x)= \begin{cases}1, & \text { जबकि } x=0 \\ 3 x-1, & \text { जबकि } x<0 \\ 0, & \text { जबकि } x>0\end{cases}
$$

Test for continuity on $x=0$ of the following function :

$$
f(x)= \begin{cases}1, & \text { when } x=0 \\ 3 x-1, & \text { when } x<0 \\ 0, & \text { when } x>0\end{cases}
$$

(b) यदि $y=\tan ^{-1} x$, तब सिद्ध कीजिए कि :
$\left(1+x^{2}\right) y_{n+2}+2(n+1) x y_{n+1}+n(n+1) y_{n}=0$
If $y=\tan ^{-1} x$, then prove that
$\left(1+x^{2}\right) y_{n+2}+2(n+1) x y_{n+1}+n(n+1) y_{n}=0$
(c) टेलर प्रमेय के द्वारा $\sin x$ का $\left(x-\frac{1}{2} \pi\right)$ कि घातों में प्रसार कीजिए।

Expand $\sin x$ in powers of $\left(x-\frac{1}{2} \pi\right)$ by Taylor's theorem.

इकाई / Unit-II

2. (a) वक्र

$$
\begin{aligned}
&(x-y)^{2}\left(x^{2}+y^{2}\right)-10(x-y) x^{2}+12 y^{2} \\
&+2 x+y=0
\end{aligned}
$$

की अनन्तस्पर्शियाँ ज्ञात कीजिए।

Find the asymptotes of the curve

$$
\begin{aligned}
&(x-y)^{2}\left(x^{2}+y^{2}\right)-10(x-y) x^{2}+12 y^{2} \\
&+2 x+y=0
\end{aligned}
$$

(b) परवलय $y^{2}=4 a x$ की बिन्दु (x, y) पर वक्रता त्रिज्या ज्ञात कीजिए।

Find the radius of curvature of the point (x, y) of the parabola $y^{2}=4 a x$.
(c) वक्र $r=a$ (वृत्त) का अनुरेखन कीजिए।

Trace the curve $r=a$ (circle).

इकाई / Unit-III

3. (a) हल कीजिए :

$$
\int x^{2}\left(1+x^{2}\right)^{1 / 3} d x
$$

Solve :

$$
\int x^{2}\left(1+x^{2}\right)^{1 / 3} d x
$$

(b) हल कीजिए :

$$
\int \frac{d x}{a+b \tan x}
$$

Solve :

$$
\int \frac{d x}{a+b \tan x}
$$

(c) सिद्ध कीजिए कि वक्र $8 a^{2} y^{2}=x^{2}\left(a^{2}-x^{2}\right)$ की पूरी लम्बाई $\sqrt{2} \pi a$ है।

Show that the whole length of the curve $8 a^{2} y^{2}=x^{2}\left(a^{2}-x^{2}\right)$ is $\sqrt{2} \pi a$.

इकाई / Unit-IV

4. (a) अवकल समीकरण

$$
(y-x) \frac{d y}{d x}=a\left(y^{2}+\frac{d y}{d x}\right)
$$

को हल कीजिए।

Solve the differential equation

$$
(y-x) \frac{d y}{d x}=a\left(y^{2}+\frac{d y}{d x}\right)
$$

(b) हल कीजिए :

$$
x^{2}=p^{2}\left(a^{2}-x^{2}\right)
$$

Solve :

$$
x^{2}=p^{2}\left(a^{2}-x^{2}\right)
$$

(c) हल कीजिए :

$$
\left(D^{4}-7 D^{3}+18 D^{2}-20 D+8\right) y
$$

Solve :

$$
\left(D^{4}-7 D^{3}+18 D^{2}-20 D+8\right) y
$$

इकाई / Unit-V
5. (a) हल कीजिए :

$$
(3-x) \frac{d^{2} y}{d x^{2}}-(9-4 x) \frac{d y}{d x}+(6-3 x) y=0
$$

(6)

Solve :

$$
(3-x) \frac{d^{2} y}{d x^{2}}-(9-4 x) \frac{d y}{d x}+(6-3 x) y=0
$$

(b) प्राचल विचरण की विधि से सिद्ध कीजिए कि:

$$
\frac{d^{2} y}{d x^{2}}+4 y=4 \tan 2 x
$$

Solve by the method of variation of parameters :

$$
\frac{d^{2} y}{d x^{2}}+4 y=4 \tan 2 x
$$

(c) साधारण युगपत् अवकल समीकरण

$$
\begin{aligned}
& \frac{d x}{d t}+4 x+3 y=t \\
& \frac{d y}{d t}+2 x+5 y=e^{t}
\end{aligned}
$$

को हल कीजिए।

Solve ordinary simultaneous differential equations :

$$
\begin{aligned}
& \frac{d x}{d t}+4 x+3 y=t \\
& \frac{d y}{d t}+2 x+5 y=e^{t}
\end{aligned}
$$

IJ-1268

B.Sc. (Part - I)

Term End Examination, 2018

MATHEMATICS

Paper - III

Vector Analysis and Geometry

Time : Three Hours] [Maximum Marks : 50
नोट : प्रत्येक प्रश्न से किन्हीं दो भागों को हल कीजिए। सभी प्रश्नों के अंक समान हैं।
Note : Answer any two parts from each question. All questions carry equal marks.

1. (a) यदि a, b, c तीन सदिश हैं, तो सिद्ध कीजिए कि

$$
[a+b, b+c, c+a]=2[a, b, c]
$$

If a, b, c be the three vectors, then prove that

$$
[a+b, b+c, c+a]=2[a, b, c]
$$

(b) फलन $\phi=x^{2} y z+4 x z^{2}$ का दिशीय अवकलज बिन्दु $(1,-2,-1)$ का सदिश $2 i-j-2 k$ की दिशा में ज्ञात कीजिए।

Find the directional derivative of function $\phi=x^{2} y z+4 x z^{2}$ in the direction of vector $2 i-j-2 k$ at the point $(1,-2,-1)$.
(c) यदि सदिश

$$
F=(x+3 y) i+(y-2 z) j+(x+a z) k
$$

एक परिनालिकीय सदिश है, तो a का मान ज्ञात कीजिए।

If vector

$$
F=(x+3 y) i+(y-2 z) j+(x+a z) k
$$

is a solenoidal vector, then find the value of a.
2. (a) मूल्यांकन कीजिए

$$
\int_{1}^{2}[A \cdot(B \times C)] d t
$$

जहाँ $\quad A=t i-3 j+2 t k, \quad B=i-2 j+2 k$, $C=3 i+t j-k$.

Evaluate

$$
\int_{1}^{2}[A \cdot(B \times C)] d t
$$

where $A=t i-3 j+2 t k, \quad B=i-2 j+2 k$, $C=3 i+t j-k$.
(b) मूल्यांकन कीजिए $\int_{C} F \cdot d r$, जहाँ $F=x^{2} y^{2} i+y j$ तथा वक्र $C, y^{2}=4 x, x y$ समतल में $(0,0)$ से $(4,4)$ तक है।

Evaluate $\int_{C} F \cdot d r$, where $F=x^{2} y^{2} i+y j$ and the curve C is $y^{2}=4 x$ in the $x y$-plane from $(0,0)$ to $(4,4)$.
(c) स्टोक्स प्रमेय का सत्यापन $F=(2 x-y) i-y z^{2} j-y^{2} z k$ के लिए कीजिए जहाँ S गोले $x^{2}+y^{2}+z^{2}=1$ का ऊपरी अर्ध सतह है तथा C इसकी सीमा रेखा को व्यक्त करता है।

Varify Stoke's theorem for $F=(2 x-y) i-y^{2} j-y^{2} z k$ where S is the upper half of the sphere $x^{2}+y^{2}+z^{2}=1$ and C indicates its boundary line.
3. (a) शांकव का अनुरेखण कीजिए

$$
17 x^{2}-12 y+8 y^{2}+46 x-28 y+17=0
$$

Trace the conic

$$
17 x^{2}-12 x y+8 y^{2}+46 x-28 y+17=0
$$

(b) दर्शाइए कि समीकरण $\frac{l}{r}=1+e \cos \theta$ तथा
$\frac{l}{r}=-1+e \cos \theta$ एक ही शांकव को प्रदर्शित करते हैं।

Show that the equations $\frac{l}{r}=1+e \cos \theta$ and .
$\frac{l}{r}=-1+e \cos \theta$ represents the same conic.
(c) सिद्ध कीजिए कि वह शर्त कि सरलरेखा $\frac{l}{r}=A \cos \theta+B \sin \theta$, शांकव $\frac{l}{r}=1+e \cos \theta$
को स्पर्श कर सके $(A-e)^{2}+B^{2}=1$ है।
$\frac{l}{r}=A \cos \theta+B \sin \theta$ may touch the conic
$\frac{l}{r}=1+e \cos \theta$ is $(A-e)^{2}+B^{2}=1$.
4. (a) उस बिन्दु को ज्ञात कीजिए जहाँ बिन्दुओं $(2,1,3)$ और $(4,-2,5)$ को मिलाने वाली सरलरेखा, समतल $2 x+y-z=3$ को काटती है।

Find the points where the line joining the points $(2,1,3)$ and $(4,-2,5)$ cuts the plane $2 x+y-z=3$.
(b) दर्शाइए कि समीकरण

$$
\begin{aligned}
4 x^{2}-y^{2}+2 z^{2}+2 x y-3 y z+12 x & -11 y \\
& +6 z+4=0
\end{aligned}
$$

एक कोण प्रदर्शित करता है तथा शीर्ष के निर्देशांक ज्ञात कीजिए।

Show that the equation

$$
\begin{array}{rl}
4 x^{2}-y^{2}+2 z^{2}+2 x y-3 y z+12 & x-11 y \\
& +6 z+4=0
\end{array}
$$

represents a cone and find the coordinates of its vertex.
(c) उस लंबवृत्तीय बेलन का समीकरण ज्ञात कीजिए, जिसकी त्रिज्या 3 तथा अक्ष $\frac{x-1}{2}=\frac{y-3}{2}=\frac{z-5}{-1}$ है।
Find the equation of right circular cylinder whose radius is 3 and axis is

$$
\frac{x-1}{2}=\frac{y-3}{2}=\frac{z-5}{-1} .
$$

5. (a) परवलयज $\frac{x^{2}}{2}-\frac{y^{2}}{3}=z$ के बिन्दु $(4,3,5)$ पर अभिलंब का समीकरण ज्ञात कीजिए। Find the equation of the normal at the point $(4,3,5)$ on the paraboloid $\frac{x^{2}}{2}-\frac{y^{2}}{3}=z$.
(b) अतिपरवलयज $\frac{x^{2}}{4}+\frac{y^{2}}{9}-\frac{z^{2}}{16}=1$ के बिन्दु $(2,3,-4)$ से जाने वाले जनकों के समीकरण ज्ञात कीजिए।
Find the equations to the generating lines of the hyperboloid $\frac{x^{2}}{4}+\frac{y^{2}}{9}-\frac{z^{2}}{16}=1$ which passes through the point (2, 3, -4).
(c) निम्न समीकरण का समानयन प्रमाणित रूप में कीजिए :

$$
\begin{aligned}
2 x^{2}-7 y^{2}+2 z^{2}-10 y z- & 8 z x-10 x y+6 x \\
& +12 y-6 z+5=0
\end{aligned}
$$

Reduce the following equation to the standard form :

$$
\begin{aligned}
& 2 x^{2}-7 y^{2}+2 z^{2}-10 y z-8 z x-10 x y+6 x \\
&+12 y-6 z+5=0
\end{aligned}
$$

