NJ-1354

 B.Sc. (Part-III) Examination;

 B.Sc. (Part-III) Examination; Mar.-Apr., 2023
 MATHEMATICS

Paper - I
(Analysis)
Time Allowed : Three Hours
Maximum Marks : 50
Minimum Pass Marks : 17

नोट : प्रत्येक प्रश्न से किन्हीं दो भागों का उत्तर दीजिए। सभी प्रश्नों
के अंक समान हैं।

Note : Answer any two parts from each question. All questions carry equal marks.

इकाई-I / UNIT-I

Q. 1. (a) यदि श्रेणियाँ $\sum_{n=1}^{\infty} a_{n}$ और $\sum_{n=1}^{\infty} b_{n}$ क्रमशः A

और B पर अभिसरित होती हैं, तब सिद्ध कीजिए:
(i) $\sum_{n=1}^{\infty}\left(a_{n}+b_{n}\right)=A+B$
(ii) $\sum_{n=1}^{\infty} r a_{n}=r A \quad(r \in R)$ If series $\sum_{n=1}^{\infty} a_{n}$ and $\sum_{n=1}^{\infty} b_{n}$ converge to A and B respectively, then prove that :
(i) $\sum_{n=1}^{\infty}\left(a_{n}+b_{n}\right)=A+B$
(ii) $\sum_{n=1}^{\infty} r a_{n}=r A \quad(r \in R)$
(b) श्वार्ज के प्रमेय का कथन लिखकर उसे सिद्ध कीजिए। State and prove Schwarz's theorem.
(c) फलन $f(x)=x^{2},-\pi<x<\pi$ का फोरियर श्रेणी प्राप्त कीजिए। अतएव व्युत्पन्न कीजिए :

$$
\frac{\pi^{2}}{12}=1-\frac{1}{4}+\frac{1}{9}-\frac{1}{16}+\ldots \ldots
$$

Find the Fourier Series of the function $f(x)=x^{2},-\pi<x<\pi$. Hence deduce that :

$$
\frac{\pi^{2}}{12}=1-\frac{1}{4}+\frac{1}{9}-\frac{1}{16}+\ldots \ldots
$$

Find the value of the following integral with
Define fixed point of Mobius transformation.

Prove that the cross ratio is invariant under

Mobius transformation.
(c) रूपान्तरण $w=z e^{\frac{i \pi}{4}}$ को लेकर w-तल के उस क्षेत्र को ज्ञात कीजिए जो z-तल के रेखाओं $x=0, y=0$ तथा $x+y=1$ से परिबद्ध त्रिभुजीय क्षेत्र के संगत है।

Take the transformation $w=z e^{\frac{i \pi}{4}}$ and determine the region in w-plane which corresponds to the triangular bounded region by lines $x=0, y=0, x+y=1$ in z-plane.
(6)

इकाई-IV / UNIT-IV
Q. 4. (a) एक दूरीक समष्टि (X, d) में सिद्ध कीजिए : $|d(x, z)-d(y, z)| \leq d(x, y) \forall x, y, z \in X$ In a metric space (X, d) prove that : $|d(x, z)-d(y, z)| \leq d(x, y) \forall x, y, z \in X$
(b) सिद्ध कीजिए कि किसी दूरीक समष्टि में प्रत्येक व्युत्पन्न समुच्चय संवृत होता है।

Prove that in a metric space, every derived set is a closed set.
(c) सिद्ध कीजिए कि कोई परिमेय संख्या ऐसी नहीं है जिसका घन 3 है।

Show that there is no rational number whose cube root is 3 .
Q. 5. (a) दर्शाइए कि समष्टि $C[a, b]$ एक वियोज्य समष्टि है। Show that the space $\mathrm{C}[\mathrm{a}, \mathrm{b}]$ is a separable space.
(b) दर्शाइए कि प्रत्येक संवृत दूरीक समष्टि, बोल्जानों वाइरस्ट्रास गुणधर्म रखता है।

Show that a compact metric space has Bolzano-Weierstrass Property.
(c) यदि (X, d) और (Y, ρ) दो दूरीक समष्ठियां हैं और
$f: X \rightarrow Y$ एकसमान संतत फलन है। यदि $\left\{x_{n}\right\} . X$
में कौशी अनुक्रम है तब सिद्ध कीजिए कि $\left\{f\left(\mathrm{x}_{\mathrm{n}}\right)\right\}$ भी
Y में एक कौशी अनुक्रम है।

NJ-1354 P.T.O.

(8)

Let (X, d) and (Y, ρ) be two metric spaces and let $f: X \rightarrow Y$ be uniformly continuous function. If $\left\{x_{n}\right\}$ is a Cauchy sequence in x then prove that $\left\{f\left(x_{n}\right)\right\}$ is also a Cauchy
sequence in Y .

