

KJ-1310

B.Sc. (Part - II) Term End Examination, 2020

MATHEMATICS

Paper - II

Differential Equations

Time : Three Hours] [Maximum Marks : 50

Note : Answer any **two** parts from each question. All questions carry equal marks.

Unit-I

1. (*a*) Find the series solution of the linear differential equation

4xy'' + 2y' + y = 0.

(b) Find the Wronskian of J_n and J_{-n} .

83_JDB_★_(4)

(Turn Over)

(c) Show that
$$(1-2xz+z^2)^{-\frac{1}{2}}$$
 is a solution

(2)

of the equation

$$z\frac{\partial^2(zv)}{\partial^2} + \frac{\partial}{\partial x}\left\{\left(1 - x^2\right)\frac{\partial v}{\partial x}\right\} = 0$$

Unit-II

- 2. (a) If F(t) is a function of class A and if $L\{F(t)\} = f(p)$, then $L\{t^n F(t)\} = (-1)^n \frac{d^n}{dp^n} f(p)$ where n = 1, 2, 3, ...
 - (b) Apply convolution theorem to prove that

$$B(m,n) = \int_0^1 x^{m-1} (1-x)^{n-1} dx = \frac{\Gamma(m)\Gamma(n)}{\Gamma(m+n)} ,$$

m > 0, n > 0.

(c) Solve $Dx + Dy = tD^2x - y = e^{-t}$, t > 0 if x(0) = 3, x'(0) = -2, y(0) = 0.

83_JDB_*_(4)

(Continued)

(3)

Unit-III

- 3. (a) Solve: $p \cos((x + y)) + q \sin((x + y)) = z$
 - (b) Solve : $x^2p^2 + y^2q^2 = z^2$
 - (c) Solve by Charpit's method

px + qy + pq = 0

Unit-IV

- (a) Classify the following P.D.E. and reduce to cannonical form $\frac{\partial^2 z}{\partial x^2} + x^2 \frac{\partial^2 z}{\partial y^2} = 0$.
 - (b) Find the general solution of the differential equation

$$\frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial y^2} = \cos mx \sin ny \; .$$

(c) Solve: r + (a + b) s + abt = xy

Unit-V

5. (a) Find the value of the curve y = f(x)which corresponds to the extremum of

83_JDB_*_(4)

4.

(Turn Over)

the functional $I[y(x)] = \int_{x_1}^{x_2} x^n \left(\frac{dy}{dx}\right)^2 dx$ and passes through two fixed points

and passes through two fixed points $x = x_1$ and $x = x_2$.

- (b) Find the shortest distance between the parabola $y = x^2$ and the straight line x y = 5.
- (c) Find the extremum of the functional

$$I = \int_{x_1}^{x_2} \left({y'}^2 + {z'}^2 + 2yz \right) dx \text{ with } y(0) = 0,$$

z(0) = 0 if the point (x_2, y_2, z_2) moves over the fixed plane $x = x_2$.

83_JDB_*_(4)

780